ROS are required for mouse spermatogonial stem cell self-renewal.

نویسندگان

  • Hiroko Morimoto
  • Kazumi Iwata
  • Narumi Ogonuki
  • Kimiko Inoue
  • Ogura Atsuo
  • Mito Kanatsu-Shinohara
  • Takeshi Morimoto
  • Chihiro Yabe-Nishimura
  • Takashi Shinohara
چکیده

Reactive oxygen species (ROS) generation is implicated in stem cell self-renewal in several tissues but is thought to be detrimental for spermatogenesis as well as spermatogonial stem cells (SSCs). Using cultured SSCs, we show that ROS are generated via the AKT and MEK signaling pathways under conditions where the growth factors glial cell line-derived neurotrophic factor and fibroblast growth factor 2 drive SSC self-renewal and, instead, stimulate self-renewal at physiological levels. SSCs depleted of ROS stopped proliferating, but they showed enhanced self-renewal when ROS levels were increased by the addition of hydrogen peroxide, which induced the phosphorylation of stress kinases p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK). Moreover, ROS depletion in vivo decreased SSC number in the testis, and NADPH oxidase 1 (Nox1)-deficient SSCs exhibited reduced self-renewal division upon serial transplantation. These results suggest that ROS generated by Nox1 play critical roles in SSC self-renewal via the activation of the p38 MAPK and JNK pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ROS-Generating Oxidase Nox3 Regulates the Self-Renewal of Mouse Spermatogonial Stem Cells.

Spermatogonial stem cells (SSCs) represent a unique population of germ cells with self-renewal potential. Although reactive oxygen species (ROS) are considered toxic to germ cells, we recently showed that moderate levels of ROS are required for SSC self-renewal and that Nox1 is involved in ROS generation. In this study, we showed that self-renewal factor treatment induces Nox3 to trigger SSC se...

متن کامل

Functional Differences between GDNF-Dependent and FGF2-Dependent Mouse Spermatogonial Stem Cell Self-Renewal

Spermatogonial stem cells (SSCs) are required for spermatogenesis. Earlier studies showed that glial cell line-derived neurotrophic factor (GDNF) was indispensable for SSC self-renewal by binding to the GFRA1/RET receptor. Mice with mutations in these molecules showed impaired spermatogenesis, which was attributed to SSC depletion. Here we show that SSCs undergo GDNF-independent self-renewal. A...

متن کامل

Spermatogonial Stem Cells: Biology, Isolation, Culture, Characterization, and Practical Perspectives

Spermatogonial stem cells (SSCs) also known as germ stem cells (GSCs) are the basis of spermatogenesis process in the testis. Furthermore, they are also valuable cells with different applications in developmental biology, transgenesis technology, and clinic. Understanding the new findings related to the cell and molecular biology of SSCs and the methods for isolation and maintenance of these ce...

متن کامل

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells.

Stem cells give rise to differentiated cell types but also preserve their undifferentiated state through cell self-renewal. With the use of transgenic mice, we found that the RNA-binding protein NANOS2 is essential for maintaining spermatogonial stem cells. Lineage-tracing analyses revealed that undifferentiated spermatogonia expressing Nanos2 self-renew and generate the entire spermatogenic ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell stem cell

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2013